首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27397篇
  免费   3837篇
  国内免费   5006篇
测绘学   3260篇
大气科学   3910篇
地球物理   5081篇
地质学   10079篇
海洋学   3110篇
天文学   5205篇
综合类   1796篇
自然地理   3799篇
  2024年   72篇
  2023年   337篇
  2022年   926篇
  2021年   1109篇
  2020年   1197篇
  2019年   1180篇
  2018年   973篇
  2017年   1038篇
  2016年   1082篇
  2015年   1203篇
  2014年   1617篇
  2013年   1842篇
  2012年   1819篇
  2011年   1825篇
  2010年   1704篇
  2009年   2111篇
  2008年   2038篇
  2007年   2089篇
  2006年   1887篇
  2005年   1568篇
  2004年   1394篇
  2003年   1204篇
  2002年   945篇
  2001年   870篇
  2000年   687篇
  1999年   648篇
  1998年   533篇
  1997年   355篇
  1996年   310篇
  1995年   279篇
  1994年   274篇
  1993年   277篇
  1992年   157篇
  1991年   133篇
  1990年   112篇
  1989年   77篇
  1988年   71篇
  1987年   38篇
  1986年   45篇
  1985年   43篇
  1984年   36篇
  1983年   24篇
  1982年   21篇
  1981年   13篇
  1980年   16篇
  1978年   10篇
  1977年   17篇
  1976年   6篇
  1973年   7篇
  1972年   6篇
排序方式: 共有10000条查询结果,搜索用时 24 毫秒
991.
Analytical solutions for the steady‐state response of an infinite beam resting on a visco‐elastic foundation and subjected to a concentrated load moving with a constant velocity are developed in this paper. The beam responses investigated are deflection, bending moment, shear force and contact pressure. The mechanical resistance of the foundation is modeled using two parameters ks and ts — ks accounts for soil resistance due to compressive strains in the soil and ts accounts for the resistance due to shear strains. Since this model represents the ground behavior more accurately than the Winkler spring model, the developed solutions produce beam responses that are closer to reality than those obtained using the existing solutions for Winkler model. The dynamic beam responses depend on the damping present in the system and on the velocity of the moving load. Based on the study, dynamic amplification curves are developed for beam deflection. Such amplification curves for deflection, bending moment, shear force and contact pressure can be developed for any beam‐foundation system and can be used in design. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
992.
Abstract

Results of a study on change detection in hydrological time series of annual maximum river flow are presented. Out of more than a thousand long time series made available by the Global Runoff Data Centre (GRDC) in Koblenz, Germany, a worldwide data set consisting of 195 long series of daily mean flow records was selected, based on such criteria as length of series, currency, lack of gaps and missing values, adequate geographical distribution, and priority to smaller catchments. The analysis of annual maximum flows does not support the hypothesis of ubiquitous growth of high flows. Although 27 cases of strong, statistically significant increase were identified by the Mann-Kendall test, there are 31 decreases as well, and most (137) time series do not show any significant changes (at the 10% level). Caution is advised in interpreting these results as flooding is a complex phenomenon, caused by a number of factors that can be associated with local, regional, and hemispheric climatic processes. Moreover, river flow has strong natural variability and exhibits long-term persistence which can confound the results of trend and significance tests.  相似文献   
993.
Abstract

Some unique coupled wind–water erosion processes exist in the desert-loess transitional zone in the middle Yellow River basin. Based on data from 40 stations on 29 rivers, a study was made on the influence of such processes on suspended sediment grain-size characteristics of the tributaries of the Yellow River. Results show that the percentage of >0.05-mm grain size decreases with the increased annual mean precipitation, but increases with the increase in the annual mean number of sand-dust storm days. The percentage of <0.01-mm grain size increases with the increase in the annual mean precipitation, but decreases with the increase in the annual number of sand-dust storm days. Based on annual mean data from 40 stations, multiple regression equations were established between the percentages of >0.05-mm grain size (r >0.05) and <0.01-mm grain size (r <0.01), annual mean precipitation (P m) and annual mean number of sand-dust storm days (D ss). On this basis, the relative contributions of the variations in D ss and P m to the variation in r >0.05 and r <0.01 were estimated. The results indicate that the variation in sand-dust storm frequency exerts greater influences on the variation in grain-size characteristics of suspended load than does the variation in annual mean precipitation. With the increase in the coupled wind–water processes index, expressed by P m/D ss, the percentage of >0.05-mm grain size in suspended sediment decreases and the percentage of <0.01-mm grain size increases. With the variation in P m/D ss, different combinations of r >0.05 with r <0.01 appear, which have some influence on the formation of hyperconcentrated flows. There exist some optimal ratios of coarse to fine fractions in suspended sediment that make sediment concentrations of hyperconcentrated flows the highest. The optimal r >0.05/r <0.01 value is related to some range of the index P m/D ss. When the P m/D ss index falls in this range, the optimum combination of relative coarse with fine sediments in the suspended load appears, and thus results in the peak values of sediment concentration.  相似文献   
994.
Stream temperature, an important measure of ecosystem health, is expected to be altered by future changes in climate and land use, potentially leading to shifts in habitat distribution for aquatic organisms dependent on particular temperature regimes. To assess the sensitivity of stream temperature to change in a region where such a shift has the potential to occur, we examine the variability of and controls on the direct relationship between air and water temperature across the state of Pennsylvania. We characterized the relationship between air and stream temperature via linear and nonlinear regression for 57 sites across Pennsylvania at daily and weekly timescales. Model fit (r2) improved for 92% (daily) and 65% (weekly) of sites for nonlinear versus linear relationships. Fit for weekly versus daily regression analysis improved by 0·08 for linear and 0·06 for nonlinear regression relationships. To investigate the mechanisms controlling stream temperature sensitivity to environmental change, we define ‘thermal sensitivity’ as the sensitivity of stream temperature of a given site to change in air temperature, quantified as the slope of the regression line between air and stream temperature. Air temperature accounted for 60–95% of the daily variation in stream temperature for sites at or above a Strahler stream order (SO) of 3, with thermal sensitivities ranging from low (0·02) to high (0·93). The sensitivity of stream temperature to air temperature is primarily controlled by stream size (SO) and baseflow contribution. Together, SO and baseflow index explained 43% of the variance in thermal sensitivity across the state, and 59% within the Susquehanna River Basin. In small streams, baseflow contribution was the major determinant of thermal sensitivity, with increasing baseflow contributions resulting in decreasing sensitivity values. In large streams, thermal sensitivity increased with stream size, as a function of accumulated heat throughout the stream network. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
995.
Abstract

Abstract The geographical context and hydroclimatology of the English Lake District means that the region is an important monitor of changes to nationally significant environmental assets. Using monthly rainfall series for sites in and around the central Lake District, a continuous ~200-year precipitation index was constructed for a representative station close to Grasmere. The bridged series shows a significant decline in summer rainfall since the 1960s, offset by increases in winter and spring that are strongly linked to North Atlantic forcing. Over longer time periods, the index exhibits several notable dry (1850s, 1880s, 1890s, 1930s, 1970s) and wet (1820s, 1870s, 1920s, 1940s, 1990s) decades. These patterns are strongly reflected by reservoir inflow series and by indicators of the biological status of the region’s freshwater lakes. It is argued that long-term climate indices will become increasingly important as managers seek to evaluate recent and project environmental changes within the context of long-term natural variability.  相似文献   
996.
Vegetation has a major influence on the water and energy balance of the earth's surface. In the last century, human activities have modified land use, inducing a consequent change in albedo and potential evapotranspiration. Linear vegetation structures (hedgerows, shelterbelts, open woodland, etc) were particularly abundant but have declined considerably over the past several decades. In this context, it is important to quantify their effect on water and energy balance both on a global scale (climate change and weather prediction) and on a local scale (soil column, hillslope and watershed). The main objective of this study was to quantify the effect of hedgerows on the water cycle by evaluating spatial and temporal variations of water balance components of a hillslope crossed by a hedgerow. Water flow simulation was performed using Hydrus‐2D to emphasize the importance of transpiration in the water balance and to evaluate water extraction from groundwater. Model validation was performed by comparing simulated and observed soil matrix potentials and groundwater levels. Hedgerow transpiration was calculated from sap flow measurements of four trees. Water balance components calculated with a one‐dimensional water balance equation were compared with simulations. Simulation runs with and without tree root uptake underlined the effect of hedgerow transpiration, increasing capillary rise and decreasing drainage. Results demonstrated that the spatial and temporal variability of water balance components was related to the hedgerow presence as well as to the meteorological context. The relations between transpiration, groundwater proximity and soil‐water availability determined the way in which water balance components were affected. Increased capillary rise and decreased drainage near hedges were related to the high transpiration of trees identified in this study. Transpiration reached twice the potential evapotranspiration when groundwater level and precipitation amounts were high. Water balance analysis showed that transpiration was a substantial component, representing 40% of total water output. These results may offer support for improving hydrological models by including the effect of land use and land cover on hydrological processes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
997.
Abstract

Abstract The aim of this study was to estimate the uncertainties in the streamflow simulated by a rainfall–runoff model. Two sources of uncertainties in hydrological modelling were considered: the uncertainties in model parameters and those in model structure. The uncertainties were calculated by Bayesian statistics, and the Metropolis-Hastings algorithm was used to simulate the posterior parameter distribution. The parameter uncertainty calculated by the Metropolis-Hastings algorithm was compared to maximum likelihood estimates which assume that both the parameters and model residuals are normally distributed. The study was performed using the model WASMOD on 25 basins in central Sweden. Confidence intervals in the simulated discharge due to the parameter uncertainty and the total uncertainty were calculated. The results indicate that (a) the Metropolis-Hastings algorithm and the maximum likelihood method give almost identical estimates concerning the parameter uncertainty, and (b) the uncertainties in the simulated streamflow due to the parameter uncertainty are less important than uncertainties originating from other sources for this simple model with fewer parameters.  相似文献   
998.
The current paper presents landslide hazard analysis around the Cameron area, Malaysia, using advanced artificial neural networks with the help of Geographic Information System (GIS) and remote sensing techniques. Landslide locations were determined in the study area by interpretation of aerial photographs and from field investigations. Topographical and geological data as well as satellite images were collected, processed, and constructed into a spatial database using GIS and image processing. Ten factors were selected for landslide hazard including: 1) factors related to topography as slope, aspect, and curvature; 2) factors related to geology as lithology and distance from lineament; 3) factors related to drainage as distance from drainage; and 4) factors extracted from TM satellite images as land cover and the vegetation index value. An advanced artificial neural network model has been used to analyze these factors in order to establish the landslide hazard map. The back-propagation training method has been used for the selection of the five different random training sites in order to calculate the factor’s weight and then the landslide hazard indices were computed for each of the five hazard maps. Finally, the landslide hazard maps (five cases) were prepared using GIS tools. Results of the landslides hazard maps have been verified using landslide test locations that were not used during the training phase of the neural network. Our findings of verification results show an accuracy of 69%, 75%, 70%, 83% and 86% for training sites 1, 2, 3, 4 and 5 respectively. GIS data was used to efficiently analyze the large volume of data, and the artificial neural network proved to be an effective tool for landslide hazard analysis. The verification results showed sufficient agreement between the presumptive hazard map and the existing data on landslide areas.  相似文献   
999.
申成祎 《测绘与空间地理信息》2010,33(1):122-123,126,130
着重探讨了塔河油田地面工程信息系统的建设思路和实现方法,针对油田的实际,以当前先进的组件式地理信息系统软件MAPGIS和可视化编程工具Microsoft Visual Studio构架的技术体系为基础,开发一套方便实用的油田地面工程信息系统。本系统建设为集原油集输、天然气和油田伴生气集输、道路、输供电线路为一体的可视化数据平台,实现了整个油田数据采集、管线图绘制,以及信息的浏览、查询统计、综合管理等功能。  相似文献   
1000.
Impact studies of catchment management in the developing world rarely include detailed hydrological components. Here, changes in the hydrological response of a 200‐ha catchment in north Ethiopia are investigated. The management included various soil and water conservation measures such as the construction of dry masonry stone bunds and check dams, the abandonment of post‐harvest grazing, and the establishment of woody vegetation. Measurements at the catchment outlet indicated a runoff depth of 5 mm or a runoff coefficient (RC) of 1·6% in the rainy season of 2006. Combined with runoff measurements at plot scale, this allowed calculating the runoff curve number (CN) for various land uses and land management techniques. The pre‐implementation runoff depth was then predicted using the CN values and a ponding adjustment factor, representing the abstraction of runoff induced by the 242 check dams in gullies. Using the 2006 rainfall depths, the runoff depth for the 2000 land management situation was predicted to be 26·5 mm (RC = 8%), in line with current RCs of nearby catchments. Monitoring of the ground water level indicated a rise after catchment management. The yearly rise in water table after the onset of the rains (ΔT) relative to the water surplus (WS) over the same period increased between 2002–2003 (ΔT/WS = 3·4) and 2006 (ΔT/WS >11·1). Emerging wells and irrigation are other indicators for improved water supply in the managed catchment. Cropped fields in the gullies indicate that farmers are less frightened for the destructive effects of flash floods. Due to increased soil water content, the crop growing period is prolonged. It can be concluded that this catchment management has resulted in a higher infiltration rate and a reduction of direct runoff volume by 81% which has had a positive influence on the catchment water balance. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号